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1 Overview

A four-vertex quantum graph was analyzed with the objective of storing the highest ampli-

tude of an incoming qubit. The procedure included the use of phase shifters to allow the user

to store and release information when he or she chooses. Several parameters, such as the

phase shift, location of the phase shifter, the size and shape of the binding graph and initial

incoming state were varied independently to optimize the storage capacity of the graph.

2 Introduction and Background to Quantum Walks

A quantum walk is a quantum version of a classical random walk. They were first proposed

by Aharonov, Davidovich and Zagury [1]. They were re-introduced several years later after

the advent of quantum information as a possible way to find new quantum algorithms [2].

Classical random walks serve as the basis of a number of classical algorithms, for example,

those for graph search problems and satisfiability problems. The idea was that if one could

produce a quantum version of a random walk, it could perhaps serve as a basis for new

quantum algorithms. This led to a considerable research effort in the area of quantum
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walks, both theoretical and experimental, and a relatively recent review of the field can be

found in [3].

The simplest classical random walk is a walk on a line. Time goes in steps, and the

particle making the walk can move either one unit to the left or one unit to the right at each

time step. A more colorful picture is that of a drunk taking steps at random, either to the

left or to the right. For both the particle and the drunk, the direction of the next step is

independent of the direction of the last one. What we would like to know is, after N steps,

the probability of the particle being in a particular position.

Let us look at this in more detail. We will denote positions on the line by x, where x

can be 0 or a positive or negative integer. The particle starts at x = 0, and at the next step

will be at either x = 1 or x = −1. If the probability of moving left and moving right is the

same, 1/2, then the probability of being at either of these locations after one step is 1/2.

After two steps, the particle will be at either x = 0, with a probability of 1/2, or at either

x = 2 or x = −2, each with a probability of 1/4. This comes about because the probability

of any particular path of two steps is 1/4, and there is one path to get to x = 2, one to get

to x = −2, and two paths to get from x = 0 back to x = 0. For N steps, the particle will

have to be on an odd value of x, if N is odd, and an even value, if N is even. Consider

the case N even. If the particle takes nl steps to the left and nr steps to the right, where

nl + nr = N , then it will finish the walk at x = nr − nl. Note that these conditions imply

that nr = (N + x)/2 and nl = (N − x)/2. Now each path has N steps, and the nr right

steps can be distributed among the total steps in

 N

nr

 ways. Each path has a probability

of 1/2N , so the probability of being at position x, for x even, after N steps (remember we

are assuming N is even) is

p(x) =
1

2N

 N

nr

 =
1

2N

 N

(N + x)/2

 , (1)
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where in the last step, we have expressed nr in terms of N and x.

This expression allows us to conclude two things about a random walk. The first is that

the most likely place for the particle to be after N steps is where it started, at x = 0. This

follows from the fact that the maximum of

 N

nr

 occurs when nr = N/2. The second is

that the spread of the particle’s position, ∆x = (〈x2〉 − 〈x〉2)1/2, where the angled brackets

denote expectation value, is proportional to
√
N . This kind of spreading is characteristic of

a diffusion process, so a quantum walk can be used to model such a process.

There are two kinds of discrete-time quantum walks. We will illustrate them by describing

the walk on a line. Consider the line as made up of vertices at the locations of the integers

connected by edges between adjacent vertices, e.g. the vertex at x = 0 is connected by an

edge to the vertex at x = 1 and by another edge to the vertex at x = −1. This is an example

of a graph, which is just a collection of vertices, some of which are connected by edges.

Note that in the classical random walk, the particle sits on the vertices. This is also true

in one of the versions of the quantum walk, the coined quantum walk [1]. For that walk,

a two-state auxiliary system, the quantum coin, is required to make the dynamics unitary.

The second kind of discrete-time quantum walk is called the scattering walk [5]. For that

walk, the particle sits on the edges and no coin is necessary. We will be using the scattering

walk throughout this thesis, and we will present a more detailed discussion of it shortly. For

a walk on a line, the two kinds of quantum walk are isomorphic, but the scattering walk has

a flexibility that makes it easier to use for more general graphs.

The coined quantum walk on a line was analyzed in [4]. Crucial differences between a

classical random walk and the coined quantum walk were found. First, it is no longer the case

that the particle is most likely to be where it started. Second, the spread in position, ∆x, is

found to be proportional to N , not
√
N . What accounts for the difference in the behavior is

interference, which occurs in a quantum walk but not in a classical random walk. A quantum

walk, rather than being related to diffusion, is closely related to wave propagation.

3
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In graphs more complicated than a line there can exist localized states, which we call

bound states. These are states that stay in one part of the graph no matter how many

steps are taken. In this thesis, we would like to show how these states can be used to store

information.

3 Scattering Walk

The graph used for a scattering quantum walk has vertices that are connected to each other

by edges, just like the coined walk. But the particle sits on the edges and gets scattered

at the vertices. Each edge has two states. The states specify the direction the particle is

moving in. We can use the previous walk on a line as an example. We denote the state the

particle is in by stating the vertices it is between, with the vertex it will interact with in the

next time step second. For example, the state, | − 1, 0〉, tells us that the particle sits on the

edge between the vertex labeled -1 and 0, facing the 0 vertex. After one discrete time step

the particle will interact with the 0 vertex. The other state at the same location is |0,−1〉,

which describes the particle facing the -1 vertex and would interact with that vertex in the

next time step.

3.1 Transition Rules

There are two types of interactions a particle can have with vertices on a scattering walk.

The particle can either transmit through the vertices or get reflected at the vertices. The

transition rules for a vertex connected by two edges were found in [5] for a particle in the

state |j + 1, j〉 and |j − 1, j〉 are respectively,

U |j + 1, j〉 = t∗|j, j − 1〉 − r∗|j, j + 1〉) (2)

4
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U |j − 1, j〉 = t|j, j + 1〉+ r|j, j − 1〉) (3)

where t is the transmittance coefficient, r is the reflection coefficient and unitary requires

|t|2 + |r|2 = 1. This thesis will be treating all vertices that are only connected by two edges

as free particle propagation. This assigns t to equal to 1 and r to equal to 0.

The transition rules are a bit different for vertices that are connected by more than

two edges, given the extra states to be accounted for. It was determined in [6] that the

transmittance and reflection coefficients for any vertex with at least three edges can be

found by:

r =
n− 2

n
(4)

t =
2

n
(5)

where n is the number of edges attached to the vertex. It follows from unitary and the

requirement that all the edges act the same way.

4 Storing States in a Graph

We will start off with a square graph that had been previous analyzed by [6].

Figure 1: Square graph

On the graph above, the left side of the 0 vertex is connected to an infinitely long linear
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graph. The vertex 0 is attached to three edges, which are attached to vertices -1, 1A and 1B.

Vertices 1A and 1B are also attached to vertex 2, which is connected to another infinitely

long linear graph on the right side of the square graph. We can use Eqn. 4 and 5 to find the

transmission and reflection coefficients at the 0 and 2 vertices. Since there are three edges

attached each, we find that t = 2
3

and r = −1
3

for both.

A free particle is set to be coming in from the left side, transmitting through every vertex

until it hits the 0 vertex. Some of the particle will be reflected backwards, but most will

be transmitted to the each of the two edges connected to 1A and 1B, entering the square

graph. The particle will continue to act like a free particle until it hits vertex 2. A portion

of the particle will be transmitted through vertex 2 and leak out of the square graph. The

remainder will get transmitted and reflected within the square graph and travel towards the

0 vertex. The same thing will occur at the 0 vertex, when a portion of the particle will

leak out of the square graph, while the remainder will then travel back towards the 2 vertex.

Once enough time steps are taken, all of the particle will have leaked out of the square graph.

This is because the particle is in an unbound state within the square graph.

It was determined in [5] that the bound states inside the square graph are the following:

|u1〉 =
1√
2

(|0, 1A〉 − |0, 1B〉) (6)

|u2〉 =
1√
2

(|1A, 2〉 − |1B, 2〉) (7)

|u3〉 =
1√
2

(|1B, 0〉 − |1A, 0〉) (8)

|u4〉 =
1√
2

(|2, 1B〉 − |2, 1A〉) (9)

A particle in any of these states or combination of these states would not be able to leak

out of the square graph. When the particle reaches the 2 vertex, the two transmissions

that occur onto the edge between vertices 2 and 3 end up destructively interfering with one

another. The same thing occurs at the 0 vertex. I will now show this in detail with the state

|u1〉.
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First we apply one time step onto |u1〉:

U |u1〉 =
1√
2

(|1A, 2〉 − |1B, 2〉) (10)

This changes the particles state from |u1〉 into |u2〉, since the particle purely transmits

through the 1A and 1B vertex. Next, we apply another time step.

U2|u1〉 =
1√
2

(
2

3
|2, 3〉+

2

3
|2, 1B〉 − 1

3
|2, 1A〉 − 2

3
|2, 3〉 − 2

3
|2, 1A〉+

1

3
|2, 1B〉) (11)

We see that terms with the state |2, 3〉, first and fourth term, canceled each other out.

The other two states can be combined together and we get the state |u4〉:

U2|u1〉 =
1√
2

(|2, 1B〉 − |2, 1A〉) (12)

It is not a coincidence that each time step resulted in the particle being in a different

bound state. This shows that a particle in a bound state will stay bounded within the square

and a particle that is in an unbound state will not. Therefore, we will need to introduce a

phase shifter into the graph to get a particle from an unbound state into a bound state.

Figure 2: Square graph with phase shifter

A phase shifter will change the optical path difference of the particle by φ. A particle that

passes through the phase shifter will pick up an eiφ so that the state is still normalized. The

figure above shows a phase shifter inserted on the left side of the 1B vertex. It is important

7
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to take note that a particle will not pick up a phase unless it passes through the left side of

vertex 1B. For example, a particle going from a state of |0, 1B〉 to |1B, 2〉 will pick up a path

difference of φ, but a particle going from the state |1B, 2〉 to |2, 1A〉 will not. Furthermore,

if a particle was able to reflect off the 1B vertex, coming from the left, would pick up a

phase difference of 2φ. However, if a particle was to reflect off of the 1B vertex from the

right it would not pick up any phase difference. We will go into how we found the location

of the phase shifter that optimizes the storage in a square graph later in the thesis, but we

first must determine the appropriate φ value to transformation the unbound states into the

bound states.

The first value we tried for φ was π
2
. We can see the effects of this phase shift by analyzing

a particle at the edge between the -1 and 0, coming from the left. We will call this state |ψ〉.

|ψ〉 = | − 1, 0〉 (13)

U |ψ〉 =
−1

3
|0,−1〉+

2

3
|0, 1A〉+

2

3
|0, 1B〉 (14)

After one time step, the most of the particle is inside the square, however it is still in an

unbound state because it has not encountered the phase shifter. We will apply a few more

time steps to find some resemblance of bound states.

U2|ψ〉 =
−1

3
| − 1,−2〉+

2

3
|1A, 2〉+

2i

3
|1B, 2〉 (15)

U3|ψ〉 =
−1

3
| − 2,−3〉+

2

3
(
−1

3
|2, 1A〉+

2

3
|2, 1B〉

+
2

3
|2, 3〉) +

2i

3
(
−1

3
|2, 1B〉+

2

3
|2, 3〉+

2

3
|2, 1A〉) (16)

8



www.manaraa.com

U4|ψ〉 =
−1

3
| − 3,−4〉+

−2

9
|1A, 0〉+

4e
iπ
2

9
|1B, 0〉+

4

9
|3, 4〉+

2

9
|1B, 0〉

+
4e

iπ
2

9
|3, 4〉+

4e
iπ
2

9
|1A, 0〉 (17)

U4|ψ〉 =
−1

3
| − 3,−4〉+

−2

9
|1A, 0〉+

2

9
|1B, 0〉+

4e
iπ
2

9
|1B, 0〉+

4e
iπ
2

9
|1A, 0〉

+
4

9
|3, 4〉+

4e
iπ
2

9
|3, 4〉 (18)

After four time steps, we see that the second and third term makes up one of the bound

states. However, we also see some of the particle is also leaking out to the right side of the

square graph. In addition, the remaining non-bound states will also eventually leave the

square graph, leaving only a small portion of the particle remaining inside. It turns out that

by initially setting φ = π, we can optimize how much of the particle will be bounded. We

will use the same initial state to demonstrate this.

|ψ〉 = | − 1, 0〉 (19)

U |ψ〉 =
−1

3
|0,−1〉+

2

3
|0, 1A〉+

2

3
|0, 1B〉 (20)

U2|ψ〉 = +
2

3
|1A, 2〉 − 2

3
|0, 1B〉 (21)

The first step is the same, regardless of the value of π. But after we apply another time

step, we see that the particle is now in a bound state. Since the portion of the particle that

got reflected at the 0 vertex will not be returning to the square well, the first term will be

left out of the remainder of the analysis. Disregarding the reflection at the 0 vertex, the

state now looks like |u2〉 of the bound states. We can reset the phase shifter so that φ = 0,

9
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as if to remove the phase shifter. This keeps the bound states within the square graph, as

we have seen previously. We can leak the particle out of the square graph, some time steps

down the line, by changing φ to π again, but we will analyze that later on in this thesis.

5 Storing a Qubit

Qubits are the building blocks of quantum information. A qubit can be represented by the

superposition of two states, where the information is stored in the coefficients of the states.

For our case, we will use a two state particle, with coefficients C0 and C1, and attempt to

store it within the square graph. A particle is set to come in from the left with the following

state, ψ.

|ψ〉 = C1| − 2,−1〉+ C0| − 1, 0〉 (22)

We will use φ = π so that the qubit will be in the bound state after 3 steps.

U |ψ〉 = C1| − 1, 0〉 − C0

3
|0,−1〉+

2C0

3
|0, 1A〉+

2C0

3
|0, 1B〉 (23)

U2|ψ〉 = −C1

3
|0,−1〉+

2C1

3
|0, 1A〉+

2C1

3
|0, 1B〉 − C0

3
| − 1,−2〉

+
2C0

3
|1A, 2〉 − 2C0

3
|1B, 2〉 (24)

U3|ψ〉 = −C1

3
| − 1,−2〉+

2C1

3
|1A, 2〉 − 2C1

3
|1B, 2〉 − C0

3
| − 2,−3〉

+
4C0

9
|2, 1B〉+

4C0

9
|2, 3〉 − 2C0

9
|2, 1A〉+

2C0

9
|2, 1B〉

−4C0

9
|2, 1A〉 − 4C0

9
|2, 3〉 (25)

10



www.manaraa.com

U3|ψ〉 = −C1

3
| − 1,−2〉+

2C1

3
|1A, 2〉 − 2C1

3
|1B, 2〉 − C0

3
| − 2,−3〉

+
2C0

3
|2, 1B〉 − 2C0

3
|2, 1A〉 (26)

U3|ψ〉 = −C1

3
| − 1,−2〉+

2
√

2C1

3
|u2〉 −

C0

3
| − 2,−3〉+

2
√

2C0

3
|u4〉 (27)

After three steps, it appears we should reset the phase shifter to 0 and the entire qubit

within the square graph will be bounded. If we reset the phase shifter too early the trailing

portion of the particle would not have a chance to become bounded and if we reset the bound

states too late the leading portion of the particle would start to leak out of the square graph

through the 0 vertex. But it turns out we can actually store more of the qubit if we hold

off on resetting the phase shifter. Lets take a few more steps to see how we can further

maximize our storage.

U4|ψ〉 = −C1

3
| − 2,−3〉+

2C1

3
|2, 1B〉 − 2C1

3
|2, 1A〉 − C0

3
| − 3,−4〉

−2C0

3
|1B, 0〉 − 2C0

3
|1A, 0〉 (28)

U5|ψ〉 = −C1

3
| − 3,−4〉 − 2C1

3
|1B, 0〉 − 2C1

3
|1A, 0〉 − C0

3
| − 4,−5〉

−2C0

3
(
2

3
|0, 1A〉+

2

3
|0,−1〉 − 1

3
|0, 1B〉)

−2C0

3
(
2

3
|0, 1B〉+

2

3
|0,−1〉 − 1

3
|0, 1A〉 (29)

11
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U5|ψ〉 = −C1

3
| − 3,−4〉 − 2C1

3
|1B, 0〉 − 2C1

3
|1A, 0〉 − C0

3
| − 4,−5〉

−4C0

9
|0, 1A〉 − 4C0

9
|0,−1〉+

2C0

9
|0, 1B〉 − 4C0

9
|0, 1B〉

−4C0

9
|0,−1〉+

2C0

9
|0, 1A〉 (30)

U5|ψ〉 = −C1

3
| − 3,−4〉 − 2C1

3
(|1B, 0〉+ |1A, 0〉)− C0

3
| − 4,−5〉

−2C0

9
(|0, 1A〉+ |0, 1B〉)− 8C0

9
|0,−1〉 (31)

We see that a large portion of one state transmits through the 0 vertex after five time

steps. However, we can actually use this to our advantage and attempt to increase the

amplitude of the particle within the square graph. Since an amplitude of −8C0

9
transmits

out of the square graph, we can use destructive interference with the same qubit structure,

but of different amplitude. To start building this qubit, we know that the its general form

looks like:

D1|k − 1, k〉+D0|k, k + 1〉 (32)

After the fifth time step, we want the leading portion of this new qubit to match the

state that would get transmitted out of the square graph of the initial qubit. This requires

that k = −1 after the fourth time step. Since it behaves like a free particle, its initial value

for k must be -5. Combining this requirement with the initial state ψ, we get a new state Ψ:

|Ψ〉 =
1

N
(D1| − 6,−5〉+D0| − 5,−4〉+ C1| − 2,−1〉+ C0| − 1, 0〉) (33)

The factor of 1
N

is to ensure that the state is still normalized. Therefore, N is related to

12
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amplitudes by

N2 = C2
0 + C2

1 +D2
0 +D2

1 (34)

To determine the relationship between the coefficients, we look at how this new particle

looks after the fifth time step.

U5|Ψ〉 =
1

N
(D1| − 1, 0〉 − D0

3
|0,−1〉+

2D0

3
|0, 1A〉+

2D0

3
|0, 1B〉

−C1

3
| − 3,−4〉 − 2C1

3
(|1B, 0〉+ |1A, 0〉)− C0

3
| − 4,−5〉

−2C0

9
(|0, 1A〉+ |0, 1B〉)− 8C0

9
|0,−1〉) (35)

We can determine the value of D0, relative to C0.

−D0

3
|0,−1〉 − 8C0

9
|0,−1〉 = 0 (36)

D0 =
−8C0

3
(37)

We can also use the same method to determine the relationship between D1 and C1 by

take another time step. It turns out they are also proportional to each other by the same

factor as D0 to C0. We substitute in these relationships and simply |Ψ〉 after the fifth time

step.

U5|Ψ〉 =
1

N
(−8C1

3
| − 1, 0〉 − 2C0|0, 1A〉 − 2C0|0, 1B〉 −

C1

3
| − 3,−4〉

−2C1

3
(|1B, 0〉+ |1A, 0〉)− C0

3
| − 4,−5〉) (38)

Lets take two more time steps before resetting the φ back to 0.

13
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U6|Ψ〉 =
1

N
(−2C1|0, 1A〉 − 2C1|0, 1B〉 −

C1

3
| − 4,−5〉

−C0

3
| − 5,−6〉 − 2C0|1A, 2〉+ 2C0|1B, 2〉) (39)

U7|Ψ〉 =
1

N
(−C1

3
| − 4,−5〉 − C0

3
| − 5,−6〉 − 2C1|1A, 2〉

+2C1|1B, 2〉+ 2C0|2, 1A〉 − 2C0|2, 1B〉
1

N
) (40)

U7|Ψ〉 =
1

N
(−C1

3
| − 4,−5〉 − C0

3
| − 5,−6〉 − 2

√
2C1|u2〉 − 2

√
2C0|u4〉) (41)

When we compare Eqn. 41 to Eqn. 27, we see that the particle is in the same bound

states. Both equations are written in terms of C0 and C1. The coefficients of the portion

of the state reflected at the 0 vertex differ in the two equations by a factor of 1
N

. However,

the coefficients of the bound states differ in the two equations by a factor of 3
N

. Notice

that we have tripled the relative amplitude of the bound states, and therefore increase the

overall probability of the particle inside the bound region by nine-fold. As a matter of fact,

repeating this method triples the relative amplitude of the bound states each time.

An important note to consider is that C1 and C0 are decoupled using this method.

Because of the geometry and the symmetry of the square graph, the two consecutive incoming

states would not interfere with each other at any point. The first state was always a step

ahead of the second state. However, if one state had lagged behind by a certain amount

of steps, it would be possible for the two states to interfere but not desirable for our case.

It is necessary that no amplitude of a state depended on both C1 and C0, given that these

coefficients are what holds the information. Wrapping up our findings together, we concluded

14
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that the ideal initial of the particle for maximum efficiency of storing information for this

graph is:

|Ψ〉 =
1

N
[C0(| − 1, 0〉 −

M∑
n=1

8

3
(−3)n−1| − 1− 4n, 0− 4n〉) + C1(| − 2,−1〉

−
M∑
n=1

8

3
(−3)n−1| − 2− 4n,−1− 4n〉)] (42)

We use N again here as a normalization factor where:

N2 = (C2
0 + C2

1)(1 + 64
M∑
n=1

32n−4) (43)

The M term in Eq. 42 and 43 is the number of additional qubit states that we are

redistributing the original state into. This number is also associated with the number of

times we are using this destructive interference at the |0,−1〉 edge to keep more and more of

the particle within the bounded graph. We should also take note increasing this M increases

the normalization factor. As a result, this decreases the significance of the reflection at the

0 vertex when the particle first enters the square, if M is large and finite.

The factor of 4n in Eqn. 42 is due to the number of steps the particle takes before coming

a full circle within the square well, similar to that of a period. This parameter would have

to be adjusted to be compatible to the graph itself. Now that we determined the ideal state

of the particle to store the most efficiency, we can turn our gear to the parameters of the

graph itself to increase the number of qubits we can store.

5.1 Optimizing Storage Space with the Size of the Binding Graph

We can optimize the storage capacity of the graph by changing the size and shape of the

bounded graph. It is necessary to increase the number of edges and vertices so that we would

15
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be able to store more qubits, and keep its symmetry to ensure the states of the qubits are

decoupled. We will use a hexagon graph to demonstrate this.

Figure 3: Quantum Walk Hexagon Graph with phase shifter attached to the right of the 2B
vertex

The hexagon graph above is very similar to the square graph and the only difference is

that there are two more vertices and edges within the binding graph. This graph is symmetric

relative to the infinite line graphs attached to vertex 3 and vertex 0. The phase shifter is

attached to the right of 2B, on the edge between 2B and 3. Since the hexagon graph has the

same symmetry exhibited by the square graph, the bound states for this graph are:

|u1〉 =
1√
2

(|0, 1A〉 − |0, 1B〉) (44)

|u2〉 =
1√
2

(|1A, 2A〉 − |1B, 2B〉) (45)

|u3〉 =
1√
2

(|1B, 0〉 − |1A, 0〉) (46)

|u4〉 =
1√
2

(|2B, 1B〉 − |2A, 1A〉) (47)

|u5〉 =
1√
2

(|2B, 3〉 − |2A, 3〉) (48)

|u6〉 =
1√
2

(|3, 2B〉 − |3, 2A〉) (49)

To account for the size change of the graph, the unnormalized incoming state is composed

of six consecutive states.
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|ψ〉 = C5| − 6,−5〉+ C4| − 5,−4〉+ C3| − 4,−3〉+ C2| − 3,−2〉

+C1| − 2,−1〉+ C0| − 1, 0〉 (50)

The state was advanced by six steps.

U |ψ〉 = C5| − 5,−4〉+ C4| − 4,−3〉+ C3| − 3,−2〉+ C2| − 2,−1〉

+C1| − 1, 0〉 +
2C0

3
|0, 1A〉+

2C0

3
|0, 1B〉 − C0

3
|0,−1〉 (51)

U2|ψ〉 = C5| − 4,−3〉+ C4| − 3,−2〉+ C3| − 2,−1〉+ C2| − 1, 0〉

+
2C1

3
|0, 1A〉+

2C1

3
|0, 1B〉 − C1

3
|0,−1〉

+
2C0

3
|1A, 2A〉+

2C0

3
|1B, 2B〉 − C0

3
| − 1,−2〉 (52)

U3|ψ〉 = C5| − 3,−2〉+ C4| − 2,−1〉+ C3| − 1, 0〉+
2C2

3
|0, 1A〉

+
2C2

3
|0, 1B〉 − C2

3
|0,−1〉+

2C1

3
|1A, 2A〉+

2C1

3
|1B, 2B〉

−C1

3
| − 1,−2〉+

2C0

3
|2A, 3〉 − 2C0

3
|2B, 3〉 − C0

3
| − 2,−3〉 (53)

U4|ψ〉 = C5| − 2,−1〉+ C4| − 1, 0〉+
2C3

3
|0, 1A〉+

2C3

3
|0, 1B〉

−C3

3
|0,−1〉+

2C2

3
|1A, 2A〉+

2C2

3
|1B, 2B〉 − C2

3
| − 1,−2〉
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+
2C1

3
|2A, 3〉 − 2C1

3
|2B, 3〉 − C1

3
| − 2,−3〉 − 2C0

3
|3, 2A〉

+
2C0

3
|3, 2B〉 − C0

3
| − 3,−4〉 (54)

U5|ψ〉 = C5| − 1, 0〉+
2C4

3
|0, 1A〉+

2C4

3
|0, 1B〉 − C4

3
|0,−1〉

+
2C3

3
|1A, 2A〉+

2C3

3
|1B, 2B〉 − C3

3
| − 1,−2〉+

2C2

3
|2A, 3〉

−2C2

3
|2B, 3〉 − C2

3
| − 2,−3〉 − 2C1

3
|3, 2A〉+

2C1

3
|3, 2B〉

−C1

3
| − 3,−4〉 − 2C0

3
|2B, 1B〉 − 2C0

3
|2A, 1A〉

−C0

3
| − 4,−5〉 (55)

U6|ψ〉 =
2C5

3
|0, 1A〉+

2C5

3
|0, 1B〉 − C5

3
|0,−1〉+

2C4

3
|1A, 2A〉

+
2C4

3
|1B, 2B〉 − C4

3
| − 1,−2〉+

2C3

3
|2A, 3〉 − 2C3

3
|2B, 3〉

−C3

3
| − 2,−3〉 − 2C2

3
|3, 2A〉+

2C2

3
|3, 2B〉 − C2

3
| − 3,−4〉

−2C1

3
|2B, 1B〉 − 2C1

3
|2A, 1A〉 − C1

3
| − 4,−5〉 − 2C0

3
|1B, 0〉

−2C0

3
|1A, 0〉 − C0

3
| − 5,−6〉 (56)

The sixth step can be rewritten in terms of the bound states.

U6|ψ〉 =
2C5

3
|0, 1A〉+

2C5

3
|0, 1B〉 − C5

3
|0,−1〉+

2C4

3
|1A, 2A〉

+
2C4

3
|1B, 2B〉 − C4

3
| − 1,−2〉 − 2

√
2C3

3
|u5〉 −

C3

3
| − 2,−3〉

+
2
√

2C2

3
|u6〉 −

C2

3
| − 3,−4〉 − 2C1

3
|2B, 1B〉 − 2C1

3
|2A, 1A〉
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−C1

3
| − 4,−5〉 − 2C0

3
|1B, 0〉 − 2C0

3
|1A, 0〉 − C0

3
| − 5,−6〉 (57)

We can see after the advancing of these six steps that this graph can fit six decoupled

states, or three qubits, within the bound states. However, only two of the six remained as

bound states. It appears that only two states can remain bound states due to the location of

the phase shifter. Figure 4 displays the optimal location for the phase shifter. By attaching

the phase shifter to the bottom right of the 0 vertex, between 0 and 1B vertices, we can have

up to six bound states within the hexagon graph at a time.

Figure 4: Quantum Walk Hexagon Graph with Phase Shifter at 0 Vertex

This is demonstrated by taking another six steps on the graph in Fig. 4 using the same

initial state.

U |ψ〉 = C5| − 5,−4〉+ C4| − 4,−3〉+ C3| − 3,−2〉+ C2| − 2,−1〉

+C1| − 1, 0〉+
2
√

2C0

3
|u1〉 −

C0

3
|0,−1〉 (58)

U2|ψ〉 = C5| − 4,−3〉+ C4| − 3,−2〉+ C3| − 2,−1〉+ C2| − 1, 0〉

+
2
√

2C1

3
|u1〉+

2
√

2C0

3
|u2〉 −

C1

3
|0,−1〉 − C0

3
| − 1,−2〉 (59)
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U3|ψ〉 = C5| − 3,−2〉+ C4| − 2,−1〉+ C3| − 1, 0〉+
2
√

2C2

3
|u1〉

+
2
√

2C1

3
|u2〉 −

2
√

2C0

3
|u5〉 −

C2

3
|0,−1〉

−C1

3
| − 1,−2〉 − C0

3
| − 2,−3〉 (60)

U4|ψ〉 = C5| − 2,−1〉+ C4| − 1, 0〉+
2
√

2C3

3
|u1〉+

2
√

2C2

3
|u2〉

−2
√

2C1

3
|u5〉+

2
√

2C0

3
|u6〉 −

C3

3
|0,−1〉 − C2

3
| − 1,−2〉

−C1

3
| − 2,−3〉 − C0

3
| − 3,−4〉 (61)

U5|ψ〉 = C5| − 1, 0〉+
2
√

2C4

3
|u1〉+

2
√

2C3

3
|u2〉 −

2
√

2C2

3
|u5〉+

2
√

2C1

3
|u6〉

−2
√

2C0

3
|u4〉 −

C4

3
|0,−1〉 − C3

3
| − 1,−2〉 − C2

3
| − 2,−3〉

−C1

3
| − 3,−4〉 − C0

3
| − 4,−5〉 (62)

U6|ψ〉 =
2
√

2C5

3
|u1〉+

2
√

2C4

3
|u2〉 −

2
√

2C3

3
|u5〉+

2
√

2C2

3
|u6〉

−2
√

2C1

3
|u4〉+

2
√

2C0

3
|u3〉 −

C5

3
|0,−1〉 − C4

3
| − 1,−2〉

−C3

3
| − 2,−3〉 − C2

3
| − 3,−4〉 − C1

3
| − 4,−5〉

−C0

3
| − 5,−6〉 (63)

It is now clear that we can store 6 bound states within this graph. However, the same
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issue occurs, if we do not change the phase shift from π to 0 after the sixth step, in this

hexagon graph as the square graph, after the fourth step. Some of the states will start to

leak out from the 0 vertex. Fortunately, the symmetry of the square graph is preserved and

we can solve this issue in a similar fashion as we did in the previous case. We can have

additional states enter from the left infinite line graph to destructively interfere with the

states that attempt to leave the bounded graph.

Since the solution was already found for the square graph, we can simply adjust the

previous solution for this graph. We start with Eqn. 42 and change the 4n′s to 6n′s because

that is how many steps it takes for a bound state to return the same bound state for the

hexagon graph. In addition, we have to include additional terms for each of the states.

|Ψ〉 =
1

N
[C0(| − 1, 0〉 −

M∑
n=1

8

3
(−3)n−1| − 1− 6n, 0− 6n〉)

+C1(| − 2,−1〉 −
M∑
n=1

8

3
(−3)n−1| − 2− 6n,−1− 6n〉)

+C2(| − 3,−2〉 −
M∑
n=1

8

3
(−3)n−1| − 1− 6n, 0− 6n〉)

+C3(| − 4,−3〉 −
M∑
n=1

8

3
(−3)n−1| − 1− 6n, 0− 6n〉)

+C4(| − 5,−4〉 −
M∑
n=1

8

3
(−3)n−1| − 1− 6n, 0− 6n〉)

+C5(| − 6,−5〉 −
M∑
n=1

8

3
(−3)n−1| − 1− 6n, 0− 6n〉)] (64)

Of course, the normalization factor do have to be adjusted for the additional quibits.

N2 = (C2
0 + C2

1 + C2
2 + C2

3 + C2
4 + C2

5)(1 + 64
M∑
n=1

32n−4) (65)
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6 Discussion

We have shown that we can optimize the storage capacity of a graph by vary numerous

parameters of a quantum walk of a particle entering a bounded graph. Based on our findings,

there are two parameters that restrict the relative amplitude of the states stored; the phase

shift and the initial state of the particle. We determined that a phase shift of π can convert

all of the unbound states that undergo the phase shift to become bound states. We also

designed the optimal initial state of the particle to prevent the loss of the amplitude due

to transmission at the 0 vertex out of the bounded graphs. Since the initial state of the

particle is made of the superposition of an infinite number of duplicated individual states

continuously coming into the bounded graph, each with higher amplitude, the amplitude of

the states being reflected at the 0 vertex becomes negligible.

We also see that the number of stored qubits capacity is restricted by the placement of

the phase shifter and the size of the bounded graph. The size of the bounded graph limits

how many bounded states the graph can hold. Having a small bounded graph will only allow

one to store a small number of qubits. However, the converse is not true. Although a graph

can have a large number of bounded states, the number of stored states is then restricted

by the location of the phase shifter. The closer the phase shifter is to the entrance of the

bounded graph, the higher the storage capacity of the graph is.
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